This function allows to simultaneously conduct different subgroup analyses using
runMetaAnalysis
objects.
Usage
subgroupAnalysis(.model,
...,
.which.run = .model$which.run[1],
.round.digits = 2,
.nnt.cer = NULL,
.tau.common = FALSE,
.html = TRUE)
Arguments
- .model
An object of class
"runMetaAnalysis"
, created byrunMetaAnalysis
.- ...
<dplyr_data_masking>. A number of subgroup variables included in the original dataset provided to
runMetaAnalysis
, separated by commas.- .which.run
The model in
.model
that should be used for the subgroup analyses. Uses the default analysis in.model
if no value is specified by the user.- .round.digits
numeric
. Number of digits to round the (presented) results by. Default is2
.- .nnt.cer
numeric
. Value between 0 and 1, indicating the assumed control group event rate to be used for calculating NNTs via the Furukawa-Leucht method. If set toNULL
(default), the value saved in.model
is (re-)used.- .tau.common
logical
. Should a common (TRUE
) or subgroup-specific (FALSE
) estimate of the between-study heterogeneity be calculated when analyzing the subgroups?FALSE
by default. Note that subgroup analyses based on "multilevel" models automatically assume common heterogeneity estimates.- .html
logical
. Should an HTML table be created for the results? Default isTRUE
.
Value
Returns an object of class "subgroupAnalysis"
. This object includes, among other things,
a data.frame
with the name summary
, in which all subgroup analysis results are summarized.
Other objects are the "raw" subgroup analysis model objects returned.
This allows to conduct further operations on some subgroup analysis specifically.
Details
For more details see the Get Started vignette.
Author
Mathias Harrer mathias.h.harrer@gmail.com, Paula Kuper paula.r.kuper@gmail.com, Pim Cuijpers p.cuijpers@vu.nl
Examples
if (FALSE) {
data("depressionPsyCtr")
depressionPsyCtr %>%
checkDataFormat() %>%
checkConflicts() %>%
calculateEffectSizes() %>%
filterPoolingData(condition_arm2 %in%
c("wl", "other ctr")) -> data
# Run the meta-analyses
runMetaAnalysis(data) -> res
# Subgroup analysis
subgroupAnalysis(res, condition_arm2, country,
.which.run = "combined",
.tau.common = TRUE) -> sg
plot(sg, "condition_arm2")
plot(sg, "country")
}