,

Skip to contents

Preparation Module

Functions to prepare the data and calculate effect sizes.

checkDataFormat()
Check data format
checkConflicts()
Check for (potential) data format conflicts
filterPoolingData()
Filter data to be pooled for meta-analysis
filterPriorityRule()
Filter data based on a priority rule
calculateEffectSizes()
Calculate effect sizes

Analysis Module

Functions to run meta-analyses.

runMetaAnalysis()
Run different types of meta-analyses
correctPublicationBias()
Correct the effect size for publication bias/small-study effects
subgroupAnalysis()
Run subgroup analyses
metaRegression()
Meta-Regression method for objects of class 'runMetaAnalysis'
metaRegression(<meta>)
Meta-Regression method for objects of class 'runMetaAnalysis'
metaRegression(<rma>)
Meta-Regression method for objects of class 'runMetaAnalysis'
metaRegression(<runMetaAnalysis>)
Meta-Regression method for objects of class 'runMetaAnalysis'
exploreStudies()
Explore included treatments and comparisons
createStudyTable()
Create study table
createRobSummary()
Create a summary risk of bias plot

Effect Size Calculators

Default plug-in functions used by calculateEffectSizes.

g.m.sd()
Calculate Hedges' g using means and standard deviations
g.change.m.sd()
Calculate Hedges' g using within-group change data
g.binary()
Calculate Hedges' g using binary outcome data
g.precalc()
Forward pre-calculated values of Hedges' g
rr.precalc()
Forward pre-calculated log-risk ratios
rr.binary()
Calculate the log-risk ratio using binary outcome data

S3 Methods & Helper Functions

Additional functionality for core functions.

blup(<runMetaAnalysis>)
Best Linear Unbiased Predictions (BLUPs) for 'runMetaAnalysis' models.
blup()
blup: Empirical Bayes estimates
eb(<runMetaAnalysis>)
Best Linear Unbiased Predictions (BLUPs) for 'runMetaAnalysis' models.
eb()
eb: Empirical Bayes estimates
imputeResponse()
Impute response rates based on continuous outcome data
metapsyFindOutliers()
Find Statistical Outliers in a Meta-Analysis
metapsyInfluenceAnalysis()
Influence Diagnostics
profile(<runMetaAnalysis>)
Profile Likelihood Plots for 'runMetaAnalysis' models.
proportionMID()
Calculate the proportion of true effect sizes above a meaningful threshold
simulateTreatmentCycles()
Simulate the number of treatment cycles and "excess treatments"
addTrialArmInfo()
Add information that varies between trial arms as extra columns to your meta-analysis dataset
plot(<proportionMID>)
Plot method for objects of class 'proportionMID'
plot(<runMetaAnalysis>)
Plot method for objects of class 'runMetaAnalysis'
plot(<simulateTreatmentCycles>)
Plot method for objects of class 'simulateTreatmentCycles'
plot(<subgroupAnalysis>)
Plot method for objects of class 'runMetaAnalysis'
print(<checkConflicts>)
Print method for the 'checkConflicts' function
print(<exploreStudies>)
Print method for objects of class 'exploreStudies'
print(<proportionMID>)
Print method for objects of class 'proportionMID'
print(<runMetaAnalysis>) print(<runMetaAnalysis>)
Print method for objects of class 'runMetaAnalysis'
print(<simulateTreatmentCycles>)
Print method for objects of class 'simulateTreatmentCycles'
print(<subgroupAnalysis>)
Print method for objects of class 'subgroupAnalysis'
summary(<runMetaAnalysis>)
Show details of 'runMetaAnalysis' class objects
`data<-`() `which.run<-`() `es.measure<-`() `es.type<-`() `es.var<-`() `se.var<-`() `es.binary.raw.vars<-`() `method.tau<-`() `i2.ci.threelevel<-`() `nsim.boot<-`() `hakn<-`() `study.var<-`() `arm.var.1<-`() `arm.var.2<-`() `measure.var<-`() `low.rob.filter<-`() `method.tau.ci<-`() `which.combine<-`() `which.combine.var<-`() `which.outliers<-`() `which.influence<-`() `which.rob<-`() `nnt.cer<-`() `rho.within.study<-`() `phi.within.study<-`() `w1.var<-`() `w2.var<-`() `vcov<-`() `near.pd<-`() `use.rve<-`() `html<-`() `lower.is.better<-`() `selmodel.steps<-`() rerun()
Replacement functions for "runMetaAnalysis" results objects

Datasets

depressionPsyCtr
The 'depressionPsyCtr' dataset