Function reference
-
checkDataFormat()
- Check data format
-
checkConflicts()
- Check for (potential) data format conflicts
-
filterPoolingData()
- Filter data to be pooled for meta-analysis
-
filterPriorityRule()
- Filter data based on a priority rule
-
calculateEffectSizes()
- Calculate effect sizes
-
runMetaAnalysis()
- Run different types of meta-analyses
-
correctPublicationBias()
- Correct the effect size for publication bias/small-study effects
-
subgroupAnalysis()
- Run subgroup analyses
-
metaRegression()
- Meta-Regression method for objects of class 'runMetaAnalysis'
-
metaRegression(<meta>)
- Meta-Regression method for objects of class 'runMetaAnalysis'
-
metaRegression(<rma>)
- Meta-Regression method for objects of class 'runMetaAnalysis'
-
metaRegression(<runMetaAnalysis>)
- Meta-Regression method for objects of class 'runMetaAnalysis'
-
exploreStudies()
- Explore included treatments and comparisons
-
createStudyTable()
- Create study table
-
createRobSummary()
- Create a summary risk of bias plot
-
g.m.sd()
- Calculate Hedges' g using means and standard deviations
-
g.change.m.sd()
- Calculate Hedges' g using within-group change data
-
g.binary()
- Calculate Hedges' g using binary outcome data
-
g.precalc()
- Forward pre-calculated values of Hedges' g
-
rr.precalc()
- Forward pre-calculated log-risk ratios
-
rr.binary()
- Calculate the log-risk ratio using binary outcome data
-
blup(<runMetaAnalysis>)
- Best Linear Unbiased Predictions (BLUPs) for 'runMetaAnalysis' models.
-
blup()
- blup: Empirical Bayes estimates
-
eb(<runMetaAnalysis>)
- Best Linear Unbiased Predictions (BLUPs) for 'runMetaAnalysis' models.
-
eb()
- eb: Empirical Bayes estimates
-
imputeResponse()
- Impute response rates based on continuous outcome data
-
metapsyFindOutliers()
- Find Statistical Outliers in a Meta-Analysis
-
metapsyInfluenceAnalysis()
- Influence Diagnostics
-
profile(<runMetaAnalysis>)
- Profile Likelihood Plots for 'runMetaAnalysis' models.
-
proportionMID()
- Calculate the proportion of true effect sizes above a meaningful threshold
-
simulateTreatmentCycles()
- Simulate the number of treatment cycles and "excess treatments"
-
addTrialArmInfo()
- Add information that varies between trial arms as extra columns to your meta-analysis dataset
-
plot(<proportionMID>)
- Plot method for objects of class 'proportionMID'
-
plot(<runMetaAnalysis>)
- Plot method for objects of class 'runMetaAnalysis'
-
plot(<simulateTreatmentCycles>)
- Plot method for objects of class 'simulateTreatmentCycles'
-
plot(<subgroupAnalysis>)
- Plot method for objects of class 'runMetaAnalysis'
-
print(<checkConflicts>)
- Print method for the 'checkConflicts' function
-
print(<exploreStudies>)
- Print method for objects of class 'exploreStudies'
-
print(<proportionMID>)
- Print method for objects of class 'proportionMID'
-
print(<runMetaAnalysis>)
print(<runMetaAnalysis>)
- Print method for objects of class 'runMetaAnalysis'
-
print(<simulateTreatmentCycles>)
- Print method for objects of class 'simulateTreatmentCycles'
-
print(<subgroupAnalysis>)
- Print method for objects of class 'subgroupAnalysis'
-
summary(<runMetaAnalysis>)
- Show details of 'runMetaAnalysis' class objects
-
`data<-`()
`which.run<-`()
`es.measure<-`()
`es.type<-`()
`es.var<-`()
`se.var<-`()
`es.binary.raw.vars<-`()
`method.tau<-`()
`i2.ci.threelevel<-`()
`nsim.boot<-`()
`hakn<-`()
`study.var<-`()
`arm.var.1<-`()
`arm.var.2<-`()
`measure.var<-`()
`low.rob.filter<-`()
`method.tau.ci<-`()
`which.combine<-`()
`which.combine.var<-`()
`which.outliers<-`()
`which.influence<-`()
`which.rob<-`()
`nnt.cer<-`()
`rho.within.study<-`()
`phi.within.study<-`()
`w1.var<-`()
`w2.var<-`()
`vcov<-`()
`near.pd<-`()
`use.rve<-`()
`html<-`()
`lower.is.better<-`()
`selmodel.steps<-`()
rerun()
- Replacement functions for "runMetaAnalysis" results objects
-
depressionPsyCtr
- The 'depressionPsyCtr' dataset