
Function reference
-
checkDataFormat() - Check data format
-
checkConflicts() - Check for (potential) data format conflicts
-
filterPoolingData() - Filter data to be pooled for meta-analysis
-
filterPriorityRule() - Filter data based on a priority rule
-
calculateEffectSizes() - Calculate effect sizes
-
flagEffectSizes() - Flag extreme and/or implausible effect sizes
-
runMetaAnalysis() - Run different types of meta-analyses
-
correctPublicationBias() - Correct the effect size for publication bias/small-study effects
-
subgroupAnalysis() - Run subgroup analyses
-
metaRegression() - Meta-Regression method for objects of class 'runMetaAnalysis'
-
metaRegression(<meta>) - Meta-Regression method for objects of class 'runMetaAnalysis'
-
metaRegression(<rma>) - Meta-Regression method for objects of class 'runMetaAnalysis'
-
metaRegression(<runMetaAnalysis>) - Meta-Regression method for objects of class 'runMetaAnalysis'
-
exploreStudies() - Explore included treatments and comparisons
-
createStudyTable() - Create study table
-
createRobSummary() - Create a summary risk of bias plot
-
g.m.sd() - Calculate Hedges' g using means and standard deviations
-
g.change.m.sd() - Calculate Hedges' g using within-group change data
-
g.binary() - Calculate Hedges' g using binary outcome data
-
g.precalc() - Forward pre-calculated values of Hedges' g
-
rr.precalc() - Forward pre-calculated log-risk ratios
-
rr.binary() - Calculate the log-risk ratio using binary outcome data
-
blup(<runMetaAnalysis>) - Best Linear Unbiased Predictions (BLUPs) for 'runMetaAnalysis' models.
-
blup() - blup: Empirical Bayes estimates
-
eb(<runMetaAnalysis>) - Best Linear Unbiased Predictions (BLUPs) for 'runMetaAnalysis' models.
-
eb() - eb: Empirical Bayes estimates
-
imputeResponse() - Impute response rates based on continuous outcome data
-
metapsyFindOutliers() - Find Statistical Outliers in a Meta-Analysis
-
metapsyInfluenceAnalysis() - Influence Diagnostics
-
profile(<runMetaAnalysis>) - Profile Likelihood Plots for 'runMetaAnalysis' models.
-
proportionMID() - Calculate the proportion of true effect sizes above a meaningful threshold
-
simulateTreatmentCycles() - Simulate the number of treatment cycles and "excess treatments"
-
addTrialArmInfo() - Add information that varies between trial arms as extra columns to your meta-analysis dataset
-
plot(<flagEffectSizes>) - Plot method for objects of class 'flagEffectSizes'
-
plot(<proportionMID>) - Plot method for objects of class 'proportionMID'
-
plot(<runMetaAnalysis>) - Plot method for objects of class 'runMetaAnalysis'
-
plot(<simulateTreatmentCycles>) - Plot method for objects of class 'simulateTreatmentCycles'
-
plot(<subgroupAnalysis>) - Plot method for objects of class 'runMetaAnalysis'
-
print(<checkConflicts>) - Print method for the 'checkConflicts' function
-
print(<exploreStudies>) - Print method for objects of class 'exploreStudies'
-
print(<flagEffectSizes>) - Print method for objects of class 'flagEffectSizes'
-
print(<proportionMID>) - Print method for objects of class 'proportionMID'
-
print(<runMetaAnalysis>) - Print method for objects of class 'runMetaAnalysis'
-
print(<simulateTreatmentCycles>) - Print method for objects of class 'simulateTreatmentCycles'
-
print(<subgroupAnalysis>) - Print method for objects of class 'subgroupAnalysis'
-
summary(<runMetaAnalysis>) - Show details of 'runMetaAnalysis' class objects
-
`data<-`()`which.run<-`()`es.measure<-`()`es.type<-`()`es.var<-`()`se.var<-`()`es.binary.raw.vars<-`()`method.tau<-`()`i2.ci.threelevel<-`()`nsim.boot<-`()`hakn<-`()`study.var<-`()`arm.var.1<-`()`arm.var.2<-`()`measure.var<-`()`low.rob.filter<-`()`method.tau.ci<-`()`which.combine<-`()`which.combine.var<-`()`which.outliers<-`()`which.influence<-`()`which.rob<-`()`nnt.cer<-`()`rho.within.study<-`()`phi.within.study<-`()`w1.var<-`()`w2.var<-`()`vcov<-`()`near.pd<-`()`use.rve<-`()`html<-`()`lower.is.better<-`()`selmodel.steps<-`()rerun() - Replacement functions for "runMetaAnalysis" results objects
-
depressionPsyCtr - The 'depressionPsyCtr' dataset